Internal
problem
ID
[18685]
Book
:
Introductory
Course
On
Differential
Equations
by
Daniel
A
Murray.
Longmans
Green
and
Co.
NY.
1924
Section
:
Chapter
II.
Equations
of
the
first
order
and
of
the
first
degree.
Exercises
at
page
28
Problem
number
:
Ex.
4
Date
solved
:
Thursday, March 13, 2025 at 12:37:42 PM
CAS
classification
:
[_rational, _Bernoulli]
ode:=diff(y(x),x)+x*y(x)/(-x^2+1) = x*y(x)^(1/2); dsolve(ode,y(x), singsol=all);
ode=D[y[x],x]+x*y[x]/(1-x^2)==x*y[x]^(1/2); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-x*sqrt(y(x)) + x*y(x)/(1 - x**2) + Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)