83.3.12 problem 12

Internal problem ID [19068]
Book : A Text book for differentional equations for postgraduate students by Ray and Chaturvedi. First edition, 1958. BHASKAR press. INDIA
Section : Chapter II. Equations of first order and first degree. Exercise II (B) at page 9
Problem number : 12
Date solved : Tuesday, January 28, 2025 at 12:50:49 PM
CAS classification : [_separable]

\begin{align*} \cos \left (y\right ) \ln \left (\sec \left (x \right )+\tan \left (x \right )\right )&=\cos \left (x \right ) \ln \left (\sec \left (y\right )+\tan \left (y\right )\right ) y^{\prime } \end{align*}

Solution by Maple

Time used: 0.323 (sec). Leaf size: 209

dsolve(cos(y(x))*ln( sec(x)+tan(x) )=cos(x)*ln(sec(y(x))+tan(y(x)))*diff(y(x),x),y(x), singsol=all)
 
\begin{align*} y \left (x \right ) &= \arctan \left (\frac {{\mathrm e}^{2 \sqrt {\ln \left (-\frac {\cos \left (x \right )}{-1+\sin \left (x \right )}\right )^{2}+2 c_{1}}}-1}{{\mathrm e}^{2 \sqrt {\ln \left (-\frac {\cos \left (x \right )}{-1+\sin \left (x \right )}\right )^{2}+2 c_{1}}}+1}, \frac {2 \,{\mathrm e}^{\sqrt {\ln \left (-\frac {\cos \left (x \right )}{-1+\sin \left (x \right )}\right )^{2}+2 c_{1}}}}{{\mathrm e}^{2 \sqrt {\ln \left (-\frac {\cos \left (x \right )}{-1+\sin \left (x \right )}\right )^{2}+2 c_{1}}}+1}\right ) \\ y \left (x \right ) &= \arctan \left (\frac {{\mathrm e}^{-2 \sqrt {\ln \left (-\frac {\cos \left (x \right )}{-1+\sin \left (x \right )}\right )^{2}+2 c_{1}}}-1}{{\mathrm e}^{-2 \sqrt {\ln \left (-\frac {\cos \left (x \right )}{-1+\sin \left (x \right )}\right )^{2}+2 c_{1}}}+1}, \frac {2 \,{\mathrm e}^{-\sqrt {\ln \left (-\frac {\cos \left (x \right )}{-1+\sin \left (x \right )}\right )^{2}+2 c_{1}}}}{{\mathrm e}^{-2 \sqrt {\ln \left (-\frac {\cos \left (x \right )}{-1+\sin \left (x \right )}\right )^{2}+2 c_{1}}}+1}\right ) \\ \end{align*}

Solution by Mathematica

Time used: 60.159 (sec). Leaf size: 103

DSolve[Cos[y[x]]*Log[ Sec[x]+Tan[x] ]==Cos[x]*Log[Sec[y[x]]+Tan[y[x]]]*D[y[x],x],y[x],x,IncludeSingularSolutions -> True]
 
\begin{align*} y(x)\to -\sec ^{-1}\left (\frac {1}{2} \left (e^{-\sqrt {\log ^2(\tan (x)+\sec (x))+2 c_1}}+e^{\sqrt {\log ^2(\tan (x)+\sec (x))+2 c_1}}\right )\right ) \\ y(x)\to \sec ^{-1}\left (\frac {1}{2} \left (e^{-\sqrt {\log ^2(\tan (x)+\sec (x))+2 c_1}}+e^{\sqrt {\log ^2(\tan (x)+\sec (x))+2 c_1}}\right )\right ) \\ \end{align*}