82.33.9 problem Ex. 9

Internal problem ID [18823]
Book : Introductory Course On Differential Equations by Daniel A Murray. Longmans Green and Co. NY. 1924
Section : Chapter VI. Linear equations with constant coefficients. Examples on chapter VI, page 80
Problem number : Ex. 9
Date solved : Thursday, March 13, 2025 at 01:00:05 PM
CAS classification : [[_3rd_order, _with_linear_symmetries]]

\begin{align*} y^{\prime \prime \prime }-13 y^{\prime }+12 y&=x \end{align*}

Maple. Time used: 0.004 (sec). Leaf size: 41
ode:=diff(diff(diff(y(x),x),x),x)-13*diff(y(x),x)+12*y(x) = x; 
dsolve(ode,y(x), singsol=all);
 
\[ y \left (x \right ) = \frac {\left (144 c_3 \,{\mathrm e}^{7 x}+144 c_{1} {\mathrm e}^{5 x}+12 \,{\mathrm e}^{4 x} x +13 \,{\mathrm e}^{4 x}+144 c_{2} \right ) {\mathrm e}^{-4 x}}{144} \]
Mathematica. Time used: 0.004 (sec). Leaf size: 36
ode=D[y[x],{x,3}]-13*D[y[x],x]+12*y[x]==x; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \frac {x}{12}+c_1 e^{-4 x}+c_2 e^x+c_3 e^{3 x}+\frac {13}{144} \]
Sympy. Time used: 0.196 (sec). Leaf size: 27
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x + 12*y(x) - 13*Derivative(y(x), x) + Derivative(y(x), (x, 3)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} e^{- 4 x} + C_{2} e^{x} + C_{3} e^{3 x} + \frac {x}{12} + \frac {13}{144} \]