Internal
problem
ID
[18824]
Book
:
Introductory
Course
On
Differential
Equations
by
Daniel
A
Murray.
Longmans
Green
and
Co.
NY.
1924
Section
:
Chapter
VI.
Linear
equations
with
constant
coefficients.
Examples
on
chapter
VI,
page
80
Problem
number
:
Ex.
10
Date
solved
:
Thursday, March 13, 2025 at 01:00:06 PM
CAS
classification
:
[[_high_order, _linear, _nonhomogeneous]]
ode:=diff(diff(diff(diff(y(x),x),x),x),x)+2*n^2*diff(diff(y(x),x),x)+n^4*y(x) = cos(m*x); dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,4}]+2*n^2*D[y[x],{x,2}]+n^4*y[x]==Cos[m*x]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") m = symbols("m") n = symbols("n") y = Function("y") ode = Eq(n**4*y(x) + 2*n**2*Derivative(y(x), (x, 2)) - cos(m*x) + Derivative(y(x), (x, 4)),0) ics = {} dsolve(ode,func=y(x),ics=ics)