83.11.3 problem 3

Internal problem ID [19091]
Book : A Text book for differentional equations for postgraduate students by Ray and Chaturvedi. First edition, 1958. BHASKAR press. INDIA
Section : Chapter III. Ordinary linear differential equations with constant coefficients. Exercise III (C) at page 33
Problem number : 3
Date solved : Thursday, March 13, 2025 at 01:40:09 PM
CAS classification : [[_3rd_order, _missing_x]]

\begin{align*} 2 y^{\prime \prime \prime }-3 y^{\prime \prime }+2 y^{\prime }+2 y&=0 \end{align*}

Maple. Time used: 0.002 (sec). Leaf size: 23
ode:=2*diff(diff(diff(y(x),x),x),x)-3*diff(diff(y(x),x),x)+2*diff(y(x),x)+2*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y \left (x \right ) = {\mathrm e}^{-\frac {x}{2}} c_{1} +c_{2} {\mathrm e}^{x} \sin \left (x \right )+c_3 \,{\mathrm e}^{x} \cos \left (x \right ) \]
Mathematica. Time used: 0.003 (sec). Leaf size: 32
ode=2*D[y[x],{x,3}]-3*D[y[x],{x,2}]+2*D[y[x],x]+2*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to c_3 e^{-x/2}+c_2 e^x \cos (x)+c_1 e^x \sin (x) \]
Sympy. Time used: 0.193 (sec). Leaf size: 22
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(2*y(x) + 2*Derivative(y(x), x) - 3*Derivative(y(x), (x, 2)) + 2*Derivative(y(x), (x, 3)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{3} e^{- \frac {x}{2}} + \left (C_{1} \sin {\left (x \right )} + C_{2} \cos {\left (x \right )}\right ) e^{x} \]