83.11.4 problem 4

Internal problem ID [19092]
Book : A Text book for differentional equations for postgraduate students by Ray and Chaturvedi. First edition, 1958. BHASKAR press. INDIA
Section : Chapter III. Ordinary linear differential equations with constant coefficients. Exercise III (C) at page 33
Problem number : 4
Date solved : Thursday, March 13, 2025 at 01:40:09 PM
CAS classification : [[_high_order, _missing_x]]

\begin{align*} y^{\prime \prime \prime \prime }-y&=0 \end{align*}

Maple. Time used: 0.004 (sec). Leaf size: 23
ode:=diff(diff(diff(diff(y(x),x),x),x),x)-y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y \left (x \right ) = {\mathrm e}^{-x} c_{1} +c_{2} {\mathrm e}^{x}+c_3 \sin \left (x \right )+c_4 \cos \left (x \right ) \]
Mathematica. Time used: 0.002 (sec). Leaf size: 30
ode=D[y[x],{x,4}]-y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to c_1 e^x+c_3 e^{-x}+c_2 \cos (x)+c_4 \sin (x) \]
Sympy. Time used: 0.064 (sec). Leaf size: 22
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-y(x) + Derivative(y(x), (x, 4)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} e^{- x} + C_{2} e^{x} + C_{3} \sin {\left (x \right )} + C_{4} \cos {\left (x \right )} \]