83.43.18 problem Ex 19 page 23

Internal problem ID [19526]
Book : A Text book for differentional equations for postgraduate students by Ray and Chaturvedi. First edition, 1958. BHASKAR press. INDIA
Section : Book Solved Excercises. Chapter II. Equations of first order and first degree
Problem number : Ex 19 page 23
Date solved : Tuesday, January 28, 2025 at 01:49:21 PM
CAS classification : [_rational]

\begin{align*} y+\frac {y^{3}}{3}+\frac {x^{2}}{2}+\frac {\left (x +x y^{2}\right ) y^{\prime }}{4}&=0 \end{align*}

Solution by Maple

Time used: 0.003 (sec). Leaf size: 313

dsolve((y(x)+1/3*y(x)^3+1/2*x^2)+1/4*(x+x*y(x)^2 )*diff(y(x),x)=0,y(x), singsol=all)
 
\begin{align*} y \left (x \right ) &= -\frac {2^{{1}/{3}} \left (x^{4}-\frac {2^{{1}/{3}} {\left (\left (-x^{6}+\sqrt {x^{12}+4 x^{8}+24 c_{1} x^{6}+144 c_{1}^{2}}-12 c_{1} \right ) x^{2}\right )}^{{2}/{3}}}{2}\right )}{{\left (\left (-x^{6}+\sqrt {x^{12}+4 x^{8}+24 c_{1} x^{6}+144 c_{1}^{2}}-12 c_{1} \right ) x^{2}\right )}^{{1}/{3}} x^{2}} \\ y \left (x \right ) &= -\frac {\left (2^{{1}/{3}} \left (1+i \sqrt {3}\right ) {\left (\left (-x^{6}+\sqrt {x^{12}+4 x^{8}+24 c_{1} x^{6}+144 c_{1}^{2}}-12 c_{1} \right ) x^{2}\right )}^{{2}/{3}}+2 x^{4} \left (i \sqrt {3}-1\right )\right ) 2^{{1}/{3}}}{4 {\left (\left (-x^{6}+\sqrt {x^{12}+4 x^{8}+24 c_{1} x^{6}+144 c_{1}^{2}}-12 c_{1} \right ) x^{2}\right )}^{{1}/{3}} x^{2}} \\ y \left (x \right ) &= \frac {2^{{1}/{3}} \left (2^{{1}/{3}} \left (i \sqrt {3}-1\right ) {\left (\left (-x^{6}+\sqrt {x^{12}+4 x^{8}+24 c_{1} x^{6}+144 c_{1}^{2}}-12 c_{1} \right ) x^{2}\right )}^{{2}/{3}}+2 x^{4} \left (1+i \sqrt {3}\right )\right )}{4 {\left (\left (-x^{6}+\sqrt {x^{12}+4 x^{8}+24 c_{1} x^{6}+144 c_{1}^{2}}-12 c_{1} \right ) x^{2}\right )}^{{1}/{3}} x^{2}} \\ \end{align*}

Solution by Mathematica

Time used: 60.108 (sec). Leaf size: 393

DSolve[(y[x]+1/3*y[x]^3+1/2*x^2)+1/4*(x+x*y[x]^2 )*D[y[x],x]==0,y[x],x,IncludeSingularSolutions -> True]
 
\begin{align*} y(x)\to \frac {-2 \sqrt [3]{2} x^8+2^{2/3} \left (-x^{14}+c_1 x^8+\sqrt {x^{16} \left (x^{12}+4 x^8-2 c_1 x^6+c_1{}^2\right )}\right ){}^{2/3}}{2 x^4 \sqrt [3]{-x^{14}+c_1 x^8+\sqrt {x^{16} \left (x^{12}+4 x^8-2 c_1 x^6+c_1{}^2\right )}}} \\ y(x)\to \frac {\sqrt [3]{2} \left (2+2 i \sqrt {3}\right ) x^8+i 2^{2/3} \left (\sqrt {3}+i\right ) \left (-x^{14}+c_1 x^8+\sqrt {x^{16} \left (x^{12}+4 x^8-2 c_1 x^6+c_1{}^2\right )}\right ){}^{2/3}}{4 x^4 \sqrt [3]{-x^{14}+c_1 x^8+\sqrt {x^{16} \left (x^{12}+4 x^8-2 c_1 x^6+c_1{}^2\right )}}} \\ y(x)\to \frac {\sqrt [3]{2} \left (2-2 i \sqrt {3}\right ) x^8-i 2^{2/3} \left (\sqrt {3}-i\right ) \left (-x^{14}+c_1 x^8+\sqrt {x^{16} \left (x^{12}+4 x^8-2 c_1 x^6+c_1{}^2\right )}\right ){}^{2/3}}{4 x^4 \sqrt [3]{-x^{14}+c_1 x^8+\sqrt {x^{16} \left (x^{12}+4 x^8-2 c_1 x^6+c_1{}^2\right )}}} \\ \end{align*}