83.18.14 problem 14

Internal problem ID [19145]
Book : A Text book for differentional equations for postgraduate students by Ray and Chaturvedi. First edition, 1958. BHASKAR press. INDIA
Section : Chapter IV. Equations of the first order but not of the first degree. Exercise IV (A) at page 53
Problem number : 14
Date solved : Thursday, March 13, 2025 at 01:45:14 PM
CAS classification : [_quadrature]

\begin{align*} \left (y^{\prime }+y+x \right ) \left (x y^{\prime }+y+x \right ) \left (y^{\prime }+2 x \right )&=0 \end{align*}

Maple. Time used: 0.004 (sec). Leaf size: 37
ode:=(diff(y(x),x)+y(x)+x)*(x*diff(y(x),x)+y(x)+x)*(diff(y(x),x)+2*x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y \left (x \right ) &= -x^{2}+c_{1} \\ y \left (x \right ) &= -\frac {x}{2}+\frac {c_{1}}{x} \\ y \left (x \right ) &= -x +1+{\mathrm e}^{-x} c_{1} \\ \end{align*}
Mathematica. Time used: 0.074 (sec). Leaf size: 46
ode=(D[y[x],x]+y[x]+x)*(x*D[y[x],x]+y[x]+x)*(D[y[x],x]+2*x)==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to -x^2+c_1 \\ y(x)\to -x+c_1 e^{-x}+1 \\ y(x)\to -\frac {x}{2}+\frac {c_1}{x} \\ \end{align*}
Sympy. Time used: 0.273 (sec). Leaf size: 26
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq((2*x + Derivative(y(x), x))*(x + y(x) + Derivative(y(x), x))*(x*Derivative(y(x), x) + x + y(x)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = C_{1} - x^{2}, \ y{\left (x \right )} = \frac {C_{1}}{x} - \frac {x}{2}, \ y{\left (x \right )} = C_{1} e^{- x} - x + 1\right ] \]