10.13.11 problem 13

Internal problem ID [1371]
Book : Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section : Chapter 5.2, Series Solutions Near an Ordinary Point, Part I. page 263
Problem number : 13
Date solved : Monday, January 27, 2025 at 04:56:17 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} 2 y^{\prime \prime }+x y^{\prime }+3 y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Solution by Maple

Time used: 0.002 (sec). Leaf size: 39

Order:=6; 
dsolve(2*diff(y(x),x$2)+x*diff(y(x),x)+3*y(x)=0,y(x),type='series',x=0);
 
\[ y = \left (1-\frac {3}{4} x^{2}+\frac {5}{32} x^{4}\right ) y \left (0\right )+\left (x -\frac {1}{3} x^{3}+\frac {1}{20} x^{5}\right ) y^{\prime }\left (0\right )+O\left (x^{6}\right ) \]

Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 42

AsymptoticDSolveValue[2*D[y[x],{x,2}]+x*D[y[x],x]+3*y[x]==0,y[x],{x,0,"6"-1}]
 
\[ y(x)\to c_2 \left (\frac {x^5}{20}-\frac {x^3}{3}+x\right )+c_1 \left (\frac {5 x^4}{32}-\frac {3 x^2}{4}+1\right ) \]