Internal
problem
ID
[990]
Book
:
Differential
equations
and
linear
algebra,
4th
ed.,
Edwards
and
Penney
Section
:
Section
7.3,
The
eigenvalue
method
for
linear
systems.
Page
395
Problem
number
:
problem
26
Date
solved
:
Tuesday, March 04, 2025 at 12:06:56 PM
CAS
classification
:
system_of_ODEs
With initial conditions
ode:=[diff(x__1(t),t) = 3*x__1(t)+x__3(t), diff(x__2(t),t) = 9*x__1(t)-x__2(t)+2*x__3(t), diff(x__3(t),t) = -9*x__1(t)+4*x__2(t)-x__3(t)]; ic:=x__1(0) = 0x__2(0) = 0x__3(0) = 17; dsolve([ode,ic]);
ode={D[ x1[t],t]==3*x1[t]+0*x2[t]+1*x3[t],D[ x2[t],t]==9*x1[t]-1*x2[t]+2*x3[t],D[ x3[t],t]==-9*x1[t]+4*x2[t]-1*x3[t]}; ic={x1[0]==0,x2[0]==0,x3[0]==17}; DSolve[{ode,ic},{x1[t],x2[t],x3[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x__1 = Function("x__1") x__2 = Function("x__2") x__3 = Function("x__3") ode=[Eq(-3*x__1(t) - x__3(t) + Derivative(x__1(t), t),0),Eq(-9*x__1(t) + x__2(t) - 2*x__3(t) + Derivative(x__2(t), t),0),Eq(9*x__1(t) - 4*x__2(t) + x__3(t) + Derivative(x__3(t), t),0)] ics = {} dsolve(ode,func=[x__1(t),x__2(t),x__3(t)],ics=ics)