10.13.14 problem 17

Internal problem ID [1374]
Book : Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section : Chapter 5.2, Series Solutions Near an Ordinary Point, Part I. page 263
Problem number : 17
Date solved : Monday, January 27, 2025 at 04:56:20 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} y^{\prime \prime }+x y^{\prime }+2 y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

With initial conditions

\begin{align*} y \left (0\right )&=4\\ y^{\prime }\left (0\right )&=-1 \end{align*}

Solution by Maple

Time used: 0.001 (sec). Leaf size: 20

Order:=6; 
dsolve([diff(y(x),x$2)+x*diff(y(x),x)+2*y(x)=0,y(0) = 4, D(y)(0) = -1],y(x),type='series',x=0);
 
\[ y = 4-x -4 x^{2}+\frac {1}{2} x^{3}+\frac {4}{3} x^{4}-\frac {1}{8} x^{5}+\operatorname {O}\left (x^{6}\right ) \]

Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 34

AsymptoticDSolveValue[{D[y[x],{x,2}]+x*D[y[x],x]+2*y[x]==0,{y[0]==4,Derivative[1][y][0] ==-1}},y[x],{x,0,"6"-1}]
 
\[ y(x)\to -\frac {x^5}{8}+\frac {4 x^4}{3}+\frac {x^3}{2}-4 x^2-x+4 \]