Internal
problem
ID
[993]
Book
:
Differential
equations
and
linear
algebra,
4th
ed.,
Edwards
and
Penney
Section
:
Section
7.3,
The
eigenvalue
method
for
linear
systems.
Page
395
Problem
number
:
problem
40
Date
solved
:
Tuesday, March 04, 2025 at 12:07:00 PM
CAS
classification
:
system_of_ODEs
ode:=[diff(x__1(t),t) = 2*x__1(t), diff(x__2(t),t) = -21*x__1(t)-5*x__2(t)-27*x__3(t)-9*x__4(t), diff(x__3(t),t) = 5*x__3(t), diff(x__4(t),t) = -21*x__3(t)-2*x__4(t)]; dsolve(ode);
ode={D[ x1[t],t]==2*x1[t]+0*x2[t]+0*x3[t]+0*x4[t],D[ x2[t],t]==-21*x1[t]-5*x2[t]-27*x3[t]-9*x4[t],D[ x3[t],t]==0*x1[t]+0*x2[t]+5*x3[t]+0*x4[t],D[ x4[t],t]==0*x1[t]+0*x2[t]-21*x3[t]-2*x4[t]}; ic={}; DSolve[{ode,ic},{x1[t],x2[t],x3[t],x4[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x__1 = Function("x__1") x__2 = Function("x__2") x__3 = Function("x__3") x__4 = Function("x__4") ode=[Eq(-2*x__1(t) + Derivative(x__1(t), t),0),Eq(21*x__1(t) + 5*x__2(t) + 27*x__3(t) + 9*x__4(t) + Derivative(x__2(t), t),0),Eq(-5*x__3(t) + Derivative(x__3(t), t),0),Eq(21*x__3(t) + 2*x__4(t) + Derivative(x__4(t), t),0)] ics = {} dsolve(ode,func=[x__1(t),x__2(t),x__3(t),x__4(t)],ics=ics)