Internal
problem
ID
[994]
Book
:
Differential
equations
and
linear
algebra,
4th
ed.,
Edwards
and
Penney
Section
:
Section
7.3,
The
eigenvalue
method
for
linear
systems.
Page
395
Problem
number
:
problem
41
Date
solved
:
Tuesday, March 04, 2025 at 12:07:01 PM
CAS
classification
:
system_of_ODEs
With initial conditions
ode:=[diff(x__1(t),t) = 4*x__1(t)+x__2(t)+x__3(t)+7*x__4(t), diff(x__2(t),t) = x__1(t)+4*x__2(t)+10*x__3(t)+x__4(t), diff(x__3(t),t) = x__1(t)+10*x__2(t)+4*x__3(t)+x__4(t), diff(x__4(t),t) = 7*x__1(t)+x__2(t)+x__3(t)+4*x__4(t)]; ic:=x__1(0) = 3x__2(0) = 1x__3(0) = 1x__4(0) = 3; dsolve([ode,ic]);
ode={D[ x1[t],t]==4*x1[t]+1*x2[t]+1*x3[t]+7*x4[t],D[ x2[t],t]==1*x1[t]+4*x2[t]+10*x3[t]+1*x4[t],D[ x3[t],t]==1*x1[t]+10*x2[t]+4*x3[t]+1*x4[t],D[ x4[t],t]==7*x1[t]+1*x2[t]+1*x3[t]+4*x4[t]}; ic={x1[0]==3,x2[0]==1,x3[0]==1,x4[0]==3}; DSolve[{ode,ic},{x1[t],x2[t],x3[t],x4[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x__1 = Function("x__1") x__2 = Function("x__2") x__3 = Function("x__3") x__4 = Function("x__4") ode=[Eq(-4*x__1(t) - x__2(t) - x__3(t) - 7*x__4(t) + Derivative(x__1(t), t),0),Eq(-x__1(t) - 4*x__2(t) - 10*x__3(t) - x__4(t) + Derivative(x__2(t), t),0),Eq(-x__1(t) - 10*x__2(t) - 4*x__3(t) - x__4(t) + Derivative(x__3(t), t),0),Eq(-7*x__1(t) - x__2(t) - x__3(t) - 4*x__4(t) + Derivative(x__4(t), t),0)] ics = {} dsolve(ode,func=[x__1(t),x__2(t),x__3(t),x__4(t)],ics=ics)