Internal
problem
ID
[996]
Book
:
Differential
equations
and
linear
algebra,
4th
ed.,
Edwards
and
Penney
Section
:
Section
7.3,
The
eigenvalue
method
for
linear
systems.
Page
395
Problem
number
:
problem
43
Date
solved
:
Tuesday, March 04, 2025 at 12:07:04 PM
CAS
classification
:
system_of_ODEs
ode:=[diff(x__1(t),t) = -20*x__1(t)+11*x__2(t)+13*x__3(t), diff(x__2(t),t) = 12*x__1(t)-x__2(t)-7*x__3(t), diff(x__3(t),t) = -48*x__1(t)+21*x__2(t)+31*x__3(t)]; dsolve(ode);
ode={D[ x1[t],t]==20*x1[t]+11*x2[t]+13*x3[t],D[ x2[t],t]==12*x1[t]-1*x2[t]-7*x3[t],D[ x3[t],t]==-48*x1[t]+21*x2[t]+31*x3[t]}; ic={}; DSolve[{ode,ic},{x1[t],x2[t],x3[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x__1 = Function("x__1") x__2 = Function("x__2") x__3 = Function("x__3") ode=[Eq(20*x__1(t) - 11*x__2(t) - 13*x__3(t) + Derivative(x__1(t), t),0),Eq(-12*x__1(t) + x__2(t) + 7*x__3(t) + Derivative(x__2(t), t),0),Eq(48*x__1(t) - 21*x__2(t) - 31*x__3(t) + Derivative(x__3(t), t),0)] ics = {} dsolve(ode,func=[x__1(t),x__2(t),x__3(t)],ics=ics)