10.13.19 problem 25

Internal problem ID [1379]
Book : Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section : Chapter 5.2, Series Solutions Near an Ordinary Point, Part I. page 263
Problem number : 25
Date solved : Monday, January 27, 2025 at 04:56:24 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} y^{\prime \prime }+x y^{\prime }+2 y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

With initial conditions

\begin{align*} y \left (0\right )&=0\\ y^{\prime }\left (0\right )&=1 \end{align*}

Solution by Maple

Time used: 0.002 (sec). Leaf size: 14

Order:=6; 
dsolve([diff(y(x),x$2)+x*diff(y(x),x)+2*y(x)=0,y(0) = 0, D(y)(0) = 1],y(x),type='series',x=0);
 
\[ y = x -\frac {1}{2} x^{3}+\frac {1}{8} x^{5}+\operatorname {O}\left (x^{6}\right ) \]

Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 19

AsymptoticDSolveValue[{D[y[x],{x,2}]+x*D[y[x],x]+2*y[x]==0,{y[0]==0,Derivative[1][y][0] ==1}},y[x],{x,0,"6"-1}]
 
\[ y(x)\to \frac {x^5}{8}-\frac {x^3}{2}+x \]