83.45.12 problem Ex 12 page 58

Internal problem ID [19476]
Book : A Text book for differentional equations for postgraduate students by Ray and Chaturvedi. First edition, 1958. BHASKAR press. INDIA
Section : Book Solved Excercises. Chapter IV. Equations of the first order but not of the first degree
Problem number : Ex 12 page 58
Date solved : Thursday, March 13, 2025 at 02:33:35 PM
CAS classification : [[_1st_order, `_with_symmetry_[F(x),G(y)]`], _dAlembert]

\begin{align*} {\mathrm e}^{3 x} \left (y^{\prime }-1\right )+{y^{\prime }}^{3} {\mathrm e}^{2 y}&=0 \end{align*}

Maple. Time used: 0.507 (sec). Leaf size: 44
ode:=exp(3*x)*(diff(y(x),x)-1)+diff(y(x),x)^3*exp(2*y(x)) = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y \left (x \right ) &= \ln \left (2\right )-\frac {3 \ln \left (3\right )}{2}+\frac {i \pi }{2}+\frac {3 x}{2} \\ y \left (x \right ) &= \frac {\ln \left (-\left ({\mathrm e}^{-x} c_{1} -1\right )^{2} {\mathrm e}^{-x} c_{1} \right )}{2}+\frac {3 x}{2} \\ \end{align*}
Mathematica
ode=Exp[3*x]*(D[y[x],x]-1)+D[y[x],x]^3*Exp[2*y[x]]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 

Timed out

Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq((Derivative(y(x), x) - 1)*exp(3*x) + exp(2*y(x))*Derivative(y(x), x)**3,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out