83.45.13 problem Ex 13 page 59

Internal problem ID [19477]
Book : A Text book for differentional equations for postgraduate students by Ray and Chaturvedi. First edition, 1958. BHASKAR press. INDIA
Section : Book Solved Excercises. Chapter IV. Equations of the first order but not of the first degree
Problem number : Ex 13 page 59
Date solved : Thursday, March 13, 2025 at 02:33:37 PM
CAS classification : [[_1st_order, _with_linear_symmetries]]

\begin{align*} y&=2 y^{\prime } x +y^{2} {y^{\prime }}^{3} \end{align*}

Maple. Time used: 0.099 (sec). Leaf size: 95
ode:=y(x) = 2*x*diff(y(x),x)+y(x)^2*diff(y(x),x)^3; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y \left (x \right ) &= -\frac {2 \left (-x^{3}\right )^{{1}/{4}} 6^{{1}/{4}}}{3} \\ y \left (x \right ) &= \frac {2 \left (-x^{3}\right )^{{1}/{4}} 6^{{1}/{4}}}{3} \\ y \left (x \right ) &= -\frac {2 i \left (-x^{3}\right )^{{1}/{4}} 6^{{1}/{4}}}{3} \\ y \left (x \right ) &= \frac {2 i \left (-x^{3}\right )^{{1}/{4}} 6^{{1}/{4}}}{3} \\ y \left (x \right ) &= 0 \\ y \left (x \right ) &= \sqrt {c_{1} \left (c_{1}^{2}+2 x \right )} \\ y \left (x \right ) &= -\sqrt {c_{1} \left (c_{1}^{2}+2 x \right )} \\ \end{align*}
Mathematica. Time used: 0.115 (sec). Leaf size: 119
ode=y[x]==2*D[y[x],x]*x+y[x]^2*D[y[x],x]^3; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to -\sqrt {2 c_1 x+c_1{}^3} \\ y(x)\to \sqrt {2 c_1 x+c_1{}^3} \\ y(x)\to (-1-i) \left (\frac {2}{3}\right )^{3/4} x^{3/4} \\ y(x)\to (1-i) \left (\frac {2}{3}\right )^{3/4} x^{3/4} \\ y(x)\to (-1+i) \left (\frac {2}{3}\right )^{3/4} x^{3/4} \\ y(x)\to (1+i) \left (\frac {2}{3}\right )^{3/4} x^{3/4} \\ \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-2*x*Derivative(y(x), x) - y(x)**2*Derivative(y(x), x)**3 + y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
IndexError : list index out of range