10.8.6 problem 12

Internal problem ID [1278]
Book : Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section : Chapter 3, Second order linear equations, 3.3 Complex Roots of the Characteristic Equation , page 164
Problem number : 12
Date solved : Tuesday, March 04, 2025 at 12:27:32 PM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} 4 y^{\prime \prime }+9 y&=0 \end{align*}

Maple. Time used: 0.000 (sec). Leaf size: 17
ode:=4*diff(diff(y(x),x),x)+9*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = c_1 \sin \left (\frac {3 x}{2}\right )+c_2 \cos \left (\frac {3 x}{2}\right ) \]
Mathematica. Time used: 0.013 (sec). Leaf size: 20
ode=D[y[x],{x,2}]+9*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to c_1 \cos (3 x)+c_2 \sin (3 x) \]
Sympy. Time used: 0.056 (sec). Leaf size: 19
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(9*y(x) + 4*Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} \sin {\left (\frac {3 x}{2} \right )} + C_{2} \cos {\left (\frac {3 x}{2} \right )} \]