10.8.7 problem 13

Internal problem ID [1279]
Book : Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section : Chapter 3, Second order linear equations, 3.3 Complex Roots of the Characteristic Equation , page 164
Problem number : 13
Date solved : Tuesday, March 04, 2025 at 12:27:34 PM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} y^{\prime \prime }+2 y^{\prime }+\frac {5 y}{4}&=0 \end{align*}

Maple. Time used: 0.002 (sec). Leaf size: 22
ode:=diff(diff(y(x),x),x)+2*diff(y(x),x)+5/4*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = {\mathrm e}^{-x} \left (c_1 \sin \left (\frac {x}{2}\right )+c_2 \cos \left (\frac {x}{2}\right )\right ) \]
Mathematica. Time used: 0.018 (sec). Leaf size: 30
ode=D[y[x],{x,2}]+2*D[y[x],x]+125/100*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to e^{-x} \left (c_2 \cos \left (\frac {x}{2}\right )+c_1 \sin \left (\frac {x}{2}\right )\right ) \]
Sympy. Time used: 0.146 (sec). Leaf size: 19
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(5*y(x)/4 + 2*Derivative(y(x), x) + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \left (C_{1} \sin {\left (\frac {x}{2} \right )} + C_{2} \cos {\left (\frac {x}{2} \right )}\right ) e^{- x} \]