Internal
problem
ID
[1455]
Book
:
Elementary
differential
equations
and
boundary
value
problems,
10th
ed.,
Boyce
and
DiPrima
Section
:
Chapter
9.1,
The
Phase
Plane:
Linear
Systems.
page
505
Problem
number
:
14
Date
solved
:
Tuesday, March 04, 2025 at 12:36:13 PM
CAS
classification
:
system_of_ODEs
ode:=[diff(x__1(t),t) = -2*x__1(t)+x__2(t)-2, diff(x__2(t),t) = x__1(t)-2*x__2(t)+1]; dsolve(ode);
ode={D[ x1[t],t]==-2*x1[t]+1*x2[t]-2,D[ x2[t],t]==1*x1[t]-2*x2[t]+1}; ic={}; DSolve[{ode,ic},{x1[t],x2[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x__1 = Function("x__1") x__2 = Function("x__2") ode=[Eq(2*x__1(t) - x__2(t) + Derivative(x__1(t), t) + 2,0),Eq(-x__1(t) + 2*x__2(t) + Derivative(x__2(t), t) - 1,0)] ics = {} dsolve(ode,func=[x__1(t),x__2(t)],ics=ics)