Internal
problem
ID
[1456]
Book
:
Elementary
differential
equations
and
boundary
value
problems,
10th
ed.,
Boyce
and
DiPrima
Section
:
Chapter
9.1,
The
Phase
Plane:
Linear
Systems.
page
505
Problem
number
:
15
Date
solved
:
Tuesday, March 04, 2025 at 12:36:14 PM
CAS
classification
:
system_of_ODEs
ode:=[diff(x__1(t),t) = -x__1(t)-x__2(t)-1, diff(x__2(t),t) = 2*x__1(t)-x__2(t)+5]; dsolve(ode);
ode={D[ x1[t],t]==-1*x1[t]-1*x2[t]-1,D[ x2[t],t]==2*x1[t]-1*x2[t]+5}; ic={}; DSolve[{ode,ic},{x1[t],x2[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x__1 = Function("x__1") x__2 = Function("x__2") ode=[Eq(x__1(t) + x__2(t) + Derivative(x__1(t), t) + 1,0),Eq(-2*x__1(t) + x__2(t) + Derivative(x__2(t), t) - 5,0)] ics = {} dsolve(ode,func=[x__1(t),x__2(t)],ics=ics)