12.12.17 problem 19

Internal problem ID [1871]
Book : Elementary differential equations with boundary value problems. William F. Trench. Brooks/Cole 2001
Section : Chapter 7 Series Solutions of Linear Second Equations. 7.2 SERIES SOLUTIONS NEAR AN ORDINARY POINT I. Exercises 7.2. Page 329
Problem number : 19
Date solved : Monday, January 27, 2025 at 05:37:36 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} \left (2 x^{2}-8 x +11\right ) y^{\prime \prime }-16 \left (x -2\right ) y^{\prime }+36 y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 2 \end{align*}

Solution by Maple

Time used: 0.003 (sec). Leaf size: 41

Order:=6; 
dsolve((11-8*x+2*x^2)*diff(y(x),x$2)-16*(x-2)*diff(y(x),x)+36*y(x)=0,y(x),type='series',x=2);
 
\[ y = \left (1-6 \left (x -2\right )^{2}+\frac {4 \left (x -2\right )^{4}}{3}\right ) y \left (2\right )+\left (x -2-\frac {10 \left (x -2\right )^{3}}{9}\right ) y^{\prime }\left (2\right )+O\left (x^{6}\right ) \]

Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 40

AsymptoticDSolveValue[(11-8*x+2*x^2)*D[y[x],{x,2}]-16*(x-2)*D[y[x],x]+36*y[x]==0,y[x],{x,2,"6"-1}]
 
\[ y(x)\to c_1 \left (\frac {4}{3} (x-2)^4-6 (x-2)^2+1\right )+c_2 \left (-\frac {10}{9} (x-2)^3+x-2\right ) \]