Internal
problem
ID
[1490]
Book
:
Elementary
differential
equations
and
boundary
value
problems,
11th
ed.,
Boyce,
DiPrima,
Meade
Section
:
Chapter
6.2,
The
Laplace
Transform.
Solution
of
Initial
Value
Problems.
page
255
Problem
number
:
15
Date
solved
:
Tuesday, March 04, 2025 at 12:36:41 PM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
Using Laplace method With initial conditions
ode:=diff(diff(y(t),t),t)+omega^2*y(t) = cos(2*t); ic:=y(0) = 1, D(y)(0) = 0; dsolve([ode,ic],y(t),method='laplace');
ode=D[y[t],{t,2}]+w^2*y[t]==Cos[2*t]; ic={y[0]==1,Derivative[1][y][0] ==0}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") omega = symbols("omega") y = Function("y") ode = Eq(omega**2*y(t) - cos(2*t) + Derivative(y(t), (t, 2)),0) ics = {y(0): 1, Subs(Derivative(y(t), t), t, 0): 0} dsolve(ode,func=y(t),ics=ics)