12.12.31 problem 37

Internal problem ID [1885]
Book : Elementary differential equations with boundary value problems. William F. Trench. Brooks/Cole 2001
Section : Chapter 7 Series Solutions of Linear Second Equations. 7.2 SERIES SOLUTIONS NEAR AN ORDINARY POINT I. Exercises 7.2. Page 329
Problem number : 37
Date solved : Monday, January 27, 2025 at 05:37:49 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} \left (-x^{3}+1\right ) y^{\prime \prime }+15 x^{2} y^{\prime }-36 y x&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Solution by Maple

Time used: 0.003 (sec). Leaf size: 29

Order:=6; 
dsolve((1-x^3)*diff(y(x),x$2)+15*x^2*diff(y(x),x)-36*x*y(x)=0,y(x),type='series',x=0);
 
\[ y = \left (6 x^{3}+1\right ) y \left (0\right )+\left (x +\frac {7}{4} x^{4}\right ) y^{\prime }\left (0\right )+O\left (x^{6}\right ) \]

Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 28

AsymptoticDSolveValue[(1-2*x^3)*D[y[x],{x,2}]-10*x^2*D[y[x],x]-8*x*y[x]==0,y[x],{x,0,"6"-1}]
 
\[ y(x)\to c_2 \left (\frac {3 x^4}{2}+x\right )+c_1 \left (\frac {4 x^3}{3}+1\right ) \]