12.12.32 problem 39

Internal problem ID [1886]
Book : Elementary differential equations with boundary value problems. William F. Trench. Brooks/Cole 2001
Section : Chapter 7 Series Solutions of Linear Second Equations. 7.2 SERIES SOLUTIONS NEAR AN ORDINARY POINT I. Exercises 7.2. Page 329
Problem number : 39
Date solved : Monday, January 27, 2025 at 05:37:50 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} \left (2 x^{5}+1\right ) y^{\prime \prime }+14 x^{4} y^{\prime }+10 x^{3} y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Solution by Maple

Time used: 0.001 (sec). Leaf size: 23

Order:=6; 
dsolve((1+2*x^5)*diff(y(x),x$2)+14*x^4*diff(y(x),x)+10*x^3*y(x)=0,y(x),type='series',x=0);
 
\[ y = \left (1-\frac {x^{5}}{2}\right ) y \left (0\right )+y^{\prime }\left (0\right ) x +O\left (x^{6}\right ) \]

Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 20

AsymptoticDSolveValue[(1+2*x^5)*D[y[x],{x,2}]+14*x^4*D[y[x],x]+10*x^3*y[x]==0,y[x],{x,0,"6"-1}]
 
\[ y(x)\to c_1 \left (1-\frac {x^5}{2}\right )+c_2 x \]