11.5.13 problem 19(b)

Internal problem ID [1518]
Book : Elementary differential equations and boundary value problems, 11th ed., Boyce, DiPrima, Meade
Section : Chapter 6.5, The Laplace Transform. Impulse functions. page 273
Problem number : 19(b)
Date solved : Tuesday, March 04, 2025 at 12:37:52 PM
CAS classification : [[_2nd_order, _linear, _nonhomogeneous]]

\begin{align*} y^{\prime \prime }+2 y^{\prime }+2 y&=\delta \left (t -\pi \right ) \end{align*}

Using Laplace method With initial conditions

\begin{align*} y \left (0\right )&=0\\ y^{\prime }\left (0\right )&=0 \end{align*}

Maple. Time used: 0.285 (sec). Leaf size: 20
ode:=diff(diff(y(t),t),t)+2*diff(y(t),t)+2*y(t) = Dirac(t-Pi); 
ic:=y(0) = 0, D(y)(0) = 0; 
dsolve([ode,ic],y(t),method='laplace');
 
\[ y = -\sin \left (t \right ) \operatorname {Heaviside}\left (t -\pi \right ) {\mathrm e}^{-t +\pi } \]
Mathematica. Time used: 0.034 (sec). Leaf size: 22
ode=D[y[t],{t,2}]+2*D[y[t],t]+2*y[t]==DiracDelta[t-Pi]; 
ic={y[0]==0,Derivative[1][y][0] ==0}; 
DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
 
\[ y(t)\to -e^{\pi -t} \theta (t-\pi ) \sin (t) \]
Sympy. Time used: 2.224 (sec). Leaf size: 66
from sympy import * 
t = symbols("t") 
y = Function("y") 
ode = Eq(-Dirac(t - pi) + 2*y(t) + 2*Derivative(y(t), t) + Derivative(y(t), (t, 2)),0) 
ics = {y(0): 0, Subs(Derivative(y(t), t), t, 0): 0} 
dsolve(ode,func=y(t),ics=ics)
 
\[ y{\left (t \right )} = \left (\left (- \int \operatorname {Dirac}{\left (t - \pi \right )} e^{t} \sin {\left (t \right )}\, dt + \int \limits ^{0} \operatorname {Dirac}{\left (t - \pi \right )} e^{t} \sin {\left (t \right )}\, dt\right ) \cos {\left (t \right )} + \left (\int \operatorname {Dirac}{\left (t - \pi \right )} e^{t} \cos {\left (t \right )}\, dt - \int \limits ^{0} \operatorname {Dirac}{\left (t - \pi \right )} e^{t} \cos {\left (t \right )}\, dt\right ) \sin {\left (t \right )}\right ) e^{- t} \]