12.14.37 problem 39

Internal problem ID [1978]
Book : Elementary differential equations with boundary value problems. William F. Trench. Brooks/Cole 2001
Section : Chapter 7 Series Solutions of Linear Second Equations. 7.5 THE METHOD OF FROBENIUS I. Exercises 7.5. Page 358
Problem number : 39
Date solved : Monday, January 27, 2025 at 05:39:34 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} 2 x^{2} \left (x^{2}+2\right ) y^{\prime \prime }-x \left (-7 x^{2}+12\right ) y^{\prime }+\left (3 x^{2}+7\right ) y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Solution by Maple

Time used: 0.009 (sec). Leaf size: 36

Order:=6; 
dsolve(2*x^2*(2+x^2)*diff(y(x),x$2)-x*(12-7*x^2)*diff(y(x),x)+(7+3*x^2)*y(x)=0,y(x),type='series',x=0);
 
\[ y = \sqrt {x}\, \left (\left (1-\frac {9}{8} x^{2}+\frac {117}{128} x^{4}+\operatorname {O}\left (x^{6}\right )\right ) x^{3} c_1 +\left (12+9 x^{2}-\frac {63}{4} x^{4}+\operatorname {O}\left (x^{6}\right )\right ) c_2 \right ) \]

Solution by Mathematica

Time used: 0.015 (sec). Leaf size: 58

AsymptoticDSolveValue[2*x^2*(2+x^2)*D[y[x],{x,2}]-x*(12-7*x^2)*D[y[x],x]+(7+3*x^2)*y[x]==0,y[x],{x,0,"6"-1}]
 
\[ y(x)\to c_1 \left (-\frac {21 x^{9/2}}{16}+\frac {3 x^{5/2}}{4}+\sqrt {x}\right )+c_2 \left (\frac {117 x^{15/2}}{128}-\frac {9 x^{11/2}}{8}+x^{7/2}\right ) \]