12.14.38 problem 40

Internal problem ID [1979]
Book : Elementary differential equations with boundary value problems. William F. Trench. Brooks/Cole 2001
Section : Chapter 7 Series Solutions of Linear Second Equations. 7.5 THE METHOD OF FROBENIUS I. Exercises 7.5. Page 358
Problem number : 40
Date solved : Monday, January 27, 2025 at 05:39:36 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} 2 x^{2} \left (x^{2}+2\right ) y^{\prime \prime }+x \left (7 x^{2}+4\right ) y^{\prime }-\left (-3 x^{2}+1\right ) y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Solution by Maple

Time used: 0.009 (sec). Leaf size: 34

Order:=6; 
dsolve(2*x^2*(2+x^2)*diff(y(x),x$2)+x*(4+7*x^2)*diff(y(x),x)-(1-3*x^2)*y(x)=0,y(x),type='series',x=0);
 
\[ y = \frac {c_1 x \left (1-\frac {1}{4} x^{2}+\frac {7}{80} x^{4}+\operatorname {O}\left (x^{6}\right )\right )+c_2 \left (1-\frac {1}{8} x^{2}+\frac {5}{128} x^{4}+\operatorname {O}\left (x^{6}\right )\right )}{\sqrt {x}} \]

Solution by Mathematica

Time used: 0.014 (sec). Leaf size: 58

AsymptoticDSolveValue[2*x^2*(2+x^2)*D[y[x],{x,2}]+x*(4+7*x^2)*D[y[x],x]-(1-3*x^2)*y[x]==0,y[x],{x,0,"6"-1}]
 
\[ y(x)\to c_1 \left (\frac {5 x^{7/2}}{128}-\frac {x^{3/2}}{8}+\frac {1}{\sqrt {x}}\right )+c_2 \left (\frac {7 x^{9/2}}{80}-\frac {x^{5/2}}{4}+\sqrt {x}\right ) \]