12.15.32 problem 28

Internal problem ID [2030]
Book : Elementary differential equations with boundary value problems. William F. Trench. Brooks/Cole 2001
Section : Chapter 7 Series Solutions of Linear Second Equations. 7.6 THE METHOD OF FROBENIUS II. Exercises 7.6. Page 374
Problem number : 28
Date solved : Monday, January 27, 2025 at 05:40:42 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} x^{2} y^{\prime \prime }-x \left (-x^{2}+1\right ) y^{\prime }+\left (x^{2}+1\right ) y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Solution by Maple

Time used: 0.007 (sec). Leaf size: 34

Order:=6; 
dsolve(x^2*diff(y(x),x$2)-x*(1-x^2)*diff(y(x),x)+(1+x^2)*y(x)=0,y(x),type='series',x=0);
 
\[ y = x \left (\left (c_2 \ln \left (x \right )+c_1 \right ) \left (1-\frac {1}{2} x^{2}+\frac {1}{8} x^{4}+\operatorname {O}\left (x^{6}\right )\right )+\left (\frac {1}{4} x^{2}-\frac {3}{32} x^{4}+\operatorname {O}\left (x^{6}\right )\right ) c_2 \right ) \]

Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 65

AsymptoticDSolveValue[x^2*D[y[x],{x,2}]-x*(1-x^2)*D[y[x],x]+(1+x^2)*y[x]==0,y[x],{x,0,"6"-1}]
 
\[ y(x)\to c_1 x \left (\frac {x^4}{8}-\frac {x^2}{2}+1\right )+c_2 \left (x \left (\frac {x^2}{4}-\frac {3 x^4}{32}\right )+x \left (\frac {x^4}{8}-\frac {x^2}{2}+1\right ) \log (x)\right ) \]