Internal
problem
ID
[1649]
Book
:
Elementary
differential
equations
with
boundary
value
problems.
William
F.
Trench.
Brooks/Cole
2001
Section
:
Chapter
2,
First
order
equations.
Transformation
of
Nonlinear
Equations
into
Separable
Equations.
Section
2.4
Page
68
Problem
number
:
22
Date
solved
:
Tuesday, March 04, 2025 at 01:00:11 PM
CAS
classification
:
[[_homogeneous, `class A`], _rational, _Bernoulli]
With initial conditions
ode:=diff(y(x),x) = (x*y(x)+y(x)^2)/x^2; ic:=y(-1) = 2; dsolve([ode,ic],y(x), singsol=all);
ode=D[y[x],x]==(x*y[x]+y[x]^2)/x^2; ic=y[-1]==2; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(Derivative(y(x), x) - (x*y(x) + y(x)**2)/x**2,0) ics = {y(-1): 2} dsolve(ode,func=y(x),ics=ics)