5.4.39 Problems 3801 to 3811

Table 5.491: Second ODE homogeneous ODE

#

ODE

Mathematica

Maple

19612

\[ {}x^{4} y^{\prime \prime } = \left (-x y^{\prime }+y\right )^{3} \]

19613

\[ {}x y^{\prime \prime }+2 y^{\prime } = x^{2} y^{\prime }-y^{2} \]

19614

\[ {}x y^{\prime \prime }-\left (2 x -1\right ) y^{\prime }+\left (x -1\right ) y = 0 \]

19615

\[ {}\sin \left (x \right )^{2} y^{\prime \prime } = 2 y \]

19619

\[ {}\left (x \sin \left (x \right )+\cos \left (x \right )\right ) y^{\prime \prime }-x \cos \left (x \right ) y^{\prime }+y \cos \left (x \right ) = 0 \]

19621

\[ {}x^{2} y^{\prime \prime }-2 \left (x^{2}+x \right ) y^{\prime }+\left (x^{2}+2 x +2\right ) y = 0 \]

19622

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+\left (x^{2}+2\right ) y = 0 \]

19623

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x^{{1}/{3}}}+\left (\frac {1}{4 x^{{2}/{3}}}-\frac {1}{6 x^{{4}/{3}}}-\frac {6}{x^{2}}\right ) y = 0 \]

19624

\[ {}y^{\prime \prime }-2 \tan \left (x \right ) y^{\prime }+y = 0 \]

19627

\[ {}y^{\prime \prime }+\cot \left (x \right ) y^{\prime }+\frac {\csc \left (x \right )^{2} y}{2} = 0 \]

19633

\[ {}3 x^{2} y^{\prime \prime }+\left (-6 x^{2}+6 x +2\right ) y^{\prime }-4 y = 0 \]