Internal
problem
ID
[1848]
Book
:
Elementary
differential
equations
with
boundary
value
problems.
William
F.
Trench.
Brooks/Cole
2001
Section
:
Chapter
7
Series
Solutions
of
Linear
Second
Equations.
7.1
Exercises.
Page
318
Problem
number
:
19
Date
solved
:
Tuesday, March 04, 2025 at 01:45:00 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
Using series method with expansion around
With initial conditions
Order:=6; ode:=(1+x)*diff(diff(y(x),x),x)+2*(x-1)^2*diff(y(x),x)+3*y(x) = 0; ic:=y(1) = a__0, D(y)(1) = a__1; dsolve([ode,ic],y(x),type='series',x=1);
ode=(1+x)*D[y[x],{x,2}]+2*(x-1)^2*D[y[x],x]+3*y[x]==0; ic={y[1]==a0,Derivative[1][y][1]==a1}; AsymptoticDSolveValue[{ode,ic},y[x],{x,1,5}]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(2*(x - 1)**2*Derivative(y(x), x) + (x + 1)*Derivative(y(x), (x, 2)) + 3*y(x),0) ics = {y(1): a__0, Subs(Derivative(y(x), x), x, 1): a__1} dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_ordinary",x0=1,n=6)