Internal
problem
ID
[1849]
Book
:
Elementary
differential
equations
with
boundary
value
problems.
William
F.
Trench.
Brooks/Cole
2001
Section
:
Chapter
7
Series
Solutions
of
Linear
Second
Equations.
7.1
Exercises.
Page
318
Problem
number
:
21
Date
solved
:
Tuesday, March 04, 2025 at 01:45:01 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
Using series method with expansion around
Order:=6; ode:=x^2*(1-x)*diff(diff(y(x),x),x)+x*(x+4)*diff(y(x),x)+(2-x)*y(x) = 0; dsolve(ode,y(x),type='series',x=0);
ode=x^2*(1-x)*D[y[x],{x,2}]+x*(4+x)*D[y[x],x]+(2-x)*y[x]==0; ic={}; AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**2*(1 - x)*Derivative(y(x), (x, 2)) + x*(x + 4)*Derivative(y(x), x) + (2 - x)*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_regular",x0=0,n=6)