13.14.21 problem 21

Internal problem ID [2461]
Book : Differential equations and their applications, 3rd ed., M. Braun
Section : Section 2.8.2, Regular singular points, the method of Frobenius. Page 214
Problem number : 21
Date solved : Monday, January 27, 2025 at 05:53:20 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} t y^{\prime \prime }+t y^{\prime }+2 y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Solution by Maple

Time used: 0.010 (sec). Leaf size: 60

Order:=6; 
dsolve(t*diff(y(t),t$2)+t*diff(y(t),t)+2*y(t)=0,y(t),type='series',t=0);
 
\[ y = c_1 t \left (1-\frac {3}{2} t +t^{2}-\frac {5}{12} t^{3}+\frac {1}{8} t^{4}-\frac {7}{240} t^{5}+\operatorname {O}\left (t^{6}\right )\right )+c_2 \left (\ln \left (t \right ) \left (\left (-2\right ) t +3 t^{2}-2 t^{3}+\frac {5}{6} t^{4}-\frac {1}{4} t^{5}+\operatorname {O}\left (t^{6}\right )\right )+\left (1-t -2 t^{2}+\frac {5}{2} t^{3}-\frac {49}{36} t^{4}+\frac {23}{48} t^{5}+\operatorname {O}\left (t^{6}\right )\right )\right ) \]

Solution by Mathematica

Time used: 0.026 (sec). Leaf size: 83

AsymptoticDSolveValue[t*D[y[t],{t,2}]+t*D[y[t],t]+2*y[t]==0,y[t],{t,0,"6"-1}]
 
\[ y(t)\to c_1 \left (\frac {1}{6} t \left (5 t^3-12 t^2+18 t-12\right ) \log (t)+\frac {1}{36} \left (-79 t^4+162 t^3-180 t^2+36 t+36\right )\right )+c_2 \left (\frac {t^5}{8}-\frac {5 t^4}{12}+t^3-\frac {3 t^2}{2}+t\right ) \]