13.14.22 problem 22

Internal problem ID [2462]
Book : Differential equations and their applications, 3rd ed., M. Braun
Section : Section 2.8.2, Regular singular points, the method of Frobenius. Page 214
Problem number : 22
Date solved : Monday, January 27, 2025 at 05:53:22 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} t y^{\prime \prime }+\left (-t^{2}+1\right ) y^{\prime }+4 y t&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Solution by Maple

Time used: 0.008 (sec). Leaf size: 32

Order:=6; 
dsolve(t*diff(y(t),t$2)+(1-t^2)*diff(y(t),t)+4*t*y(t)=0,y(t),type='series',t=0);
 
\[ y = \left (c_2 \ln \left (t \right )+c_1 \right ) \left (1-t^{2}+\frac {1}{8} t^{4}+\operatorname {O}\left (t^{6}\right )\right )+\left (\frac {5}{4} t^{2}-\frac {9}{32} t^{4}+\operatorname {O}\left (t^{6}\right )\right ) c_2 \]

Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 56

AsymptoticDSolveValue[t*D[y[t],{t,2}]+(1-t^2)*D[y[t],t]+4*t*y[t]==0,y[t],{t,0,"6"-1}]
 
\[ y(t)\to c_1 \left (\frac {t^4}{8}-t^2+1\right )+c_2 \left (-\frac {9 t^4}{32}+\frac {5 t^2}{4}+\left (\frac {t^4}{8}-t^2+1\right ) \log (t)\right ) \]