5.8.15 Problems 1401 to 1447

Table 5.627: Third and higher order ode

#

ODE

Mathematica

Maple

19343

\[ {}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-x y^{\prime }+y = x \ln \left (x \right ) \]

19344

\[ {}x^{4} y^{\prime \prime \prime \prime }+6 x^{3} y^{\prime \prime \prime }+9 x^{2} y^{\prime \prime }+3 x y^{\prime }+y = \left (\ln \left (x \right )+1\right )^{2} \]

19350

\[ {}x^{3} y^{\prime \prime \prime }+6 x^{2} y^{\prime \prime }+8 x y^{\prime }+2 y = x^{2}+3 x -4 \]

19351

\[ {}x y^{\prime \prime \prime }+\left (x^{2}-3\right ) y^{\prime \prime }+4 x y^{\prime }+2 y = 0 \]

19360

\[ {}x^{2} y^{\prime \prime \prime }+4 x y^{\prime \prime }+\left (x^{2}+2\right ) y^{\prime }+3 x y = 2 \]

19361

\[ {}x^{5} y^{\left (6\right )}+x^{4} y^{\left (5\right )}+x y^{\prime }+y = \ln \left (x \right ) \]

19362

\[ {}x^{3} y^{\prime \prime \prime }+4 x^{2} y^{\prime \prime }+x \left (x^{2}+2\right ) y^{\prime }+3 x^{2} y = 2 x \]

19364

\[ {}y^{\prime \prime \prime } = f \left (x \right ) \]

19365

\[ {}y^{2}+\left (2 x y-1\right ) y^{\prime }+x y^{\prime \prime }+x^{2} y^{\prime \prime \prime } = 0 \]

19369

\[ {}x^{3} y^{\prime \prime \prime } = 1 \]

19371

\[ {}y^{\prime \prime \prime } \csc \left (x \right )^{2} = 1 \]

19384

\[ {}x^{2} y^{\prime \prime \prime }-4 x y^{\prime \prime }+6 y^{\prime } = 4 \]

19389

\[ {}x y^{\prime \prime \prime }-x y^{\prime \prime }-y^{\prime } = 0 \]

19402

\[ {}y^{\prime \prime } y^{\prime \prime \prime } = 2 \]

19409

\[ {}a^{2} y^{\prime \prime \prime \prime } = y^{\prime \prime } \]

19410

\[ {}y^{\prime \prime \prime \prime }+a^{2} y^{\prime \prime } = 0 \]

19411

\[ {}y^{\left (5\right )}-n^{2} y^{\prime \prime \prime } = {\mathrm e}^{a x} \]

19412

\[ {}x^{2} y^{\prime \prime \prime \prime }+a^{2} y^{\prime \prime } = 0 \]

19413

\[ {}x^{2} y^{\prime \prime \prime \prime } = \lambda y^{\prime \prime } \]

19414

\[ {}n \,x^{3} y^{\prime \prime \prime } = -x y^{\prime }+y \]

19423

\[ {}a y^{\prime \prime \prime } = y^{\prime \prime } \]

19424

\[ {}x^{2} y^{\prime \prime \prime \prime }+1 = 0 \]

19425

\[ {}y^{\prime \prime \prime } = \sin \left (x \right )^{2} \]

19432

\[ {}2 x y^{\prime \prime \prime } y^{\prime \prime } = {y^{\prime \prime }}^{2}-a^{2} \]

19434

\[ {}\left (x^{3}-4 x \right ) y^{\prime \prime \prime }+\left (9 x^{2}-4\right ) y^{\prime \prime }+18 x y^{\prime }+6 y = 6 \]

19441

\[ {}y^{\prime \prime \prime }-x y^{\prime \prime }-y^{\prime }+x y = 0 \]

19442

\[ {}x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

19530

\[ {}y^{\prime \prime \prime \prime }-y^{\prime \prime \prime }-9 y^{\prime \prime }-11 y^{\prime }-4 y = 0 \]

19531

\[ {}y^{\prime \prime \prime }-8 y = 0 \]

19532

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime }+y^{\prime } = {\mathrm e}^{-x} \]

19534

\[ {}y^{\prime \prime \prime }+y = \left (1+{\mathrm e}^{x}\right )^{2} \]

19536

\[ {}y^{\prime \prime \prime }+a^{2} y^{\prime } = \sin \left (a x \right ) \]

19537

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+4 y^{\prime }-2 y = {\mathrm e}^{x}+\cos \left (x \right ) \]

19539

\[ {}y^{\prime \prime \prime }+3 y^{\prime \prime }+2 y^{\prime } = x^{2} \]

19578

\[ {}x^{4} y^{\prime \prime \prime }+2 x^{3} y^{\prime \prime }-x^{2} y^{\prime }+x y = 1 \]

19580

\[ {}x^{3} y^{\prime \prime \prime }-x^{2} y^{\prime \prime }+2 x y^{\prime }-2 y = x^{2}+3 x \]

19581

\[ {}x^{3} y^{\prime \prime \prime }+6 x^{2} y^{\prime \prime }+4 x y^{\prime }-4 y = 0 \]

19582

\[ {}x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }+x y^{\prime }+y = 0 \]

19584

\[ {}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }+2 y = 10 x +\frac {10}{x} \]

19586

\[ {}\left (2 x -1\right )^{3} y^{\prime \prime \prime }+\left (2 x -1\right ) y^{\prime }-2 y = 0 \]

19588

\[ {}16 \left (1+x \right )^{4} y^{\prime \prime \prime \prime }+96 \left (1+x \right )^{3} y^{\prime \prime \prime }+104 \left (1+x \right )^{2} y^{\prime \prime }+8 \left (1+x \right ) y^{\prime }+y = x^{2}+4 x +3 \]

19593

\[ {}\left (x^{2}+x +1\right ) y^{\prime \prime \prime }+\left (3+6 x \right ) y^{\prime \prime }+6 y^{\prime } = 0 \]

19594

\[ {}\left (x^{3}-x \right ) y^{\prime \prime \prime }+\left (8 x^{2}-3\right ) y^{\prime \prime }+14 x y^{\prime }+4 y = \frac {2}{x^{3}} \]

19595

\[ {}y^{\prime \prime \prime }+\cos \left (x \right ) y^{\prime \prime }-2 \sin \left (x \right ) y^{\prime }-y \cos \left (x \right ) = \sin \left (2 x \right ) \]

19602

\[ {}y^{\prime \prime \prime } = x \,{\mathrm e}^{x} \]

19611

\[ {}y^{\prime \prime \prime \prime }-a^{2} y^{\prime \prime } = 0 \]

19638

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y = {\mathrm e}^{2 x} \]