14.25.1 problem Example 1, page 361
Internal
problem
ID
[2758]
Book
:
Differential
equations
and
their
applications,
4th
ed.,
M.
Braun
Section
:
Section
3.12,
Systems
of
differential
equations.
The
nonhomogeneous
equation.
variation
of
parameters.
Page
366
Problem
number
:
Example
1,
page
361
Date
solved
:
Tuesday, March 04, 2025 at 02:40:58 PM
CAS
classification
:
system_of_ODEs
\begin{align*} \frac {d}{d t}x_{1} \left (t \right )&=x_{1} \left (t \right )\\ \frac {d}{d t}x_{2} \left (t \right )&=2 x_{1} \left (t \right )+x_{2} \left (t \right )-2 x_{3} \left (t \right )\\ \frac {d}{d t}x_{3} \left (t \right )&=3 x_{1} \left (t \right )+2 x_{2} \left (t \right )+x_{3} \left (t \right )+{\mathrm e}^{t} \cos \left (2 t \right ) \end{align*}
✓ Maple. Time used: 1.038 (sec). Leaf size: 90
ode:=[diff(x__1(t),t) = x__1(t), diff(x__2(t),t) = 2*x__1(t)+x__2(t)-2*x__3(t), diff(x__3(t),t) = 3*x__1(t)+2*x__2(t)+x__3(t)+exp(t)*cos(2*t)];
dsolve(ode);
\begin{align*}
x_{1} \left (t \right ) &= c_3 \,{\mathrm e}^{t} \\
x_{2} \left (t \right ) &= \frac {{\mathrm e}^{t} \left (-3 c_3 -3 c_3 \cos \left (2 t \right )+2 c_2 \sin \left (2 t \right )-t \sin \left (2 t \right )+2 c_1 \cos \left (2 t \right )\right )}{2} \\
x_{3} \left (t \right ) &= \frac {{\mathrm e}^{t} \left (4 c_1 \sin \left (2 t \right )-6 c_3 \sin \left (2 t \right )-4 c_2 \cos \left (2 t \right )+2 t \cos \left (2 t \right )+\sin \left (2 t \right )+4 c_3 \right )}{4} \\
\end{align*}
✓ Mathematica. Time used: 0.015 (sec). Leaf size: 103
ode={D[ x1[t],t]==1*x1[t]+0*x2[t]+0*x3[t],D[ x2[t],t]==2*x1[t]+1*x2[t]-2*x3[t],D[ x3[t],t]==3*x1[t]+2*x2[t]+1*x3[t]+Exp[t]*Cos[2*t]};
ic={};
DSolve[{ode,ic},{x1[t],x2[t],x3[t]},t,IncludeSingularSolutions->True]
\begin{align*}
\text {x1}(t)\to c_1 e^t \\
\text {x2}(t)\to -\frac {1}{8} e^t ((1-12 c_1-8 c_2) \cos (2 t)+4 (t-2 c_1+2 c_3) \sin (2 t)+12 c_1) \\
\text {x3}(t)\to \frac {1}{8} e^t (4 (t-2 c_1+2 c_3) \cos (2 t)+(1+12 c_1+8 c_2) \sin (2 t)+8 c_1) \\
\end{align*}
✓ Sympy. Time used: 0.174 (sec). Leaf size: 119
from sympy import *
t = symbols("t")
x__1 = Function("x__1")
x__2 = Function("x__2")
x__3 = Function("x__3")
ode=[Eq(-x__1(t) + Derivative(x__1(t), t),0),Eq(-2*x__1(t) - x__2(t) + 2*x__3(t) + Derivative(x__2(t), t),0),Eq(-3*x__1(t) - 2*x__2(t) - x__3(t) - exp(t)*cos(2*t) + Derivative(x__3(t), t),0)]
ics = {}
dsolve(ode,func=[x__1(t),x__2(t),x__3(t)],ics=ics)
\[
\left [ x^{1}{\left (t \right )} = C_{1} e^{t}, \ x^{2}{\left (t \right )} = - \frac {3 C_{1} e^{t}}{2} - C_{2} e^{t} \sin {\left (2 t \right )} - C_{3} e^{t} \cos {\left (2 t \right )} - \frac {t e^{t} \sin {\left (2 t \right )}}{2}, \ x^{3}{\left (t \right )} = C_{1} e^{t} + C_{2} e^{t} \cos {\left (2 t \right )} - C_{3} e^{t} \sin {\left (2 t \right )} + \frac {t e^{t} \cos {\left (2 t \right )}}{2} + \frac {e^{t} \sin ^{3}{\left (2 t \right )}}{4} + \frac {e^{t} \sin {\left (2 t \right )} \cos ^{2}{\left (2 t \right )}}{4}\right ]
\]