Internal
problem
ID
[2803]
Book
:
Differential
equations
and
their
applications,
4th
ed.,
M.
Braun
Section
:
Chapter
4.
Qualitative
theory
of
differential
equations.
Section
4.2
(Stability
of
linear
systems).
Page
383
Problem
number
:
5
Date
solved
:
Tuesday, March 04, 2025 at 02:42:51 PM
CAS
classification
:
system_of_ODEs
ode:=[diff(x(t),t) = -7*x(t)+y(t)-6*z(t), diff(y(t),t) = 10*x(t)-4*y(t)+12*z(t), diff(z(t),t) = 2*x(t)-y(t)+z(t)]; dsolve(ode);
ode={D[x[t],t]==-7*x[t]+1*y[t]-6*z[t],D[y[t],t]==10*x[t]-4*y[t]+12*z[t],D[z[t],t]==2*x[t]-1*y[t]+1*z[t]}; ic={}; DSolve[{ode,ic},{x[t],y[t],z[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x = Function("x") y = Function("y") z = Function("z") ode=[Eq(7*x(t) - y(t) + 6*z(t) + Derivative(x(t), t),0),Eq(-10*x(t) + 4*y(t) - 12*z(t) + Derivative(y(t), t),0),Eq(-2*x(t) + y(t) - z(t) + Derivative(z(t), t),0)] ics = {} dsolve(ode,func=[x(t),y(t),z(t)],ics=ics)