Internal
problem
ID
[2804]
Book
:
Differential
equations
and
their
applications,
4th
ed.,
M.
Braun
Section
:
Chapter
4.
Qualitative
theory
of
differential
equations.
Section
4.2
(Stability
of
linear
systems).
Page
383
Problem
number
:
6
Date
solved
:
Tuesday, March 04, 2025 at 02:42:52 PM
CAS
classification
:
system_of_ODEs
ode:=[diff(x(t),t) = 3*x(t)+2*y(t)+4*z(t), diff(y(t),t) = 2*x(t)+2*z(t), diff(z(t),t) = 4*x(t)+2*y(t)+3*z(t)]; dsolve(ode);
ode={D[x[t],t]==3*x[t]+2*y[t]+4*z[t],D[y[t],t]==2*x[t]-0*y[t]+2*z[t],D[z[t],t]==4*x[t]+2*y[t]+3*z[t]}; ic={}; DSolve[{ode,ic},{x[t],y[t],z[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x = Function("x") y = Function("y") z = Function("z") ode=[Eq(-3*x(t) - 2*y(t) - 4*z(t) + Derivative(x(t), t),0),Eq(-2*x(t) - 2*z(t) + Derivative(y(t), t),0),Eq(-4*x(t) - 2*y(t) - 3*z(t) + Derivative(z(t), t),0)] ics = {} dsolve(ode,func=[x(t),y(t),z(t)],ics=ics)