20.11.3 problem Problem 3

Internal problem ID [3785]
Book : Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section : Chapter 8, Linear differential equations of order n. Section 8.9, Reduction of Order. page 572
Problem number : Problem 3
Date solved : Monday, January 27, 2025 at 08:02:16 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} x^{2} y^{\prime \prime }-2 x y^{\prime }+\left (x^{2}+2\right ) y&=0 \end{align*}

Using reduction of order method given that one solution is

\begin{align*} y&=x \sin \left (x \right ) \end{align*}

Solution by Maple

Time used: 0.005 (sec). Leaf size: 15

dsolve([x^2*diff(y(x),x$2)-2*x*diff(y(x),x)+(x^2+2)*y(x)=0,x*sin(x)],singsol=all)
 
\[ y \left (x \right ) = x \left (c_{1} \sin \left (x \right )+c_{2} \cos \left (x \right )\right ) \]

Solution by Mathematica

Time used: 0.029 (sec). Leaf size: 33

DSolve[x^2*D[y[x],{x,2}]-2*x*D[y[x],x]+(x^2+2)*y[x]==0,y[x],x,IncludeSingularSolutions -> True]
 
\[ y(x)\to c_1 e^{-i x} x-\frac {1}{2} i c_2 e^{i x} x \]