16.1.2 problem 2(b)

Internal problem ID [3404]
Book : Elementary Differential Equations, Martin, Reissner, 2nd ed, 1961
Section : Exercis 2, page 5
Problem number : 2(b)
Date solved : Tuesday, March 04, 2025 at 04:37:46 PM
CAS classification : [_quadrature]

\begin{align*} y^{\prime }&=2 \,{\mathrm e}^{3 x} \end{align*}

Maple. Time used: 0.001 (sec). Leaf size: 12
ode:=diff(y(x),x) = 2*exp(3*x); 
dsolve(ode,y(x), singsol=all);
 
\[ y \left (x \right ) = \frac {2 \,{\mathrm e}^{3 x}}{3}+c_{1} \]
Mathematica. Time used: 0.003 (sec). Leaf size: 17
ode=D[y[x],x]==2*Exp[3*x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \frac {2 e^{3 x}}{3}+c_1 \]
Sympy. Time used: 0.122 (sec). Leaf size: 12
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-2*exp(3*x) + Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} + \frac {2 e^{3 x}}{3} \]