16.1.4 problem 2(d)

Internal problem ID [3406]
Book : Elementary Differential Equations, Martin, Reissner, 2nd ed, 1961
Section : Exercis 2, page 5
Problem number : 2(d)
Date solved : Tuesday, March 04, 2025 at 04:37:48 PM
CAS classification : [_quadrature]

\begin{align*} y^{\prime }&={\mathrm e}^{x^{2}} \end{align*}

Maple. Time used: 0.000 (sec). Leaf size: 13
ode:=diff(y(x),x) = exp(x^2); 
dsolve(ode,y(x), singsol=all);
 
\[ y \left (x \right ) = \frac {\sqrt {\pi }\, \operatorname {erfi}\left (x \right )}{2}+c_{1} \]
Mathematica. Time used: 0.016 (sec). Leaf size: 19
ode=D[y[x],x]==Exp[x^2]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \frac {1}{2} \sqrt {\pi } \text {erfi}(x)+c_1 \]
Sympy. Time used: 0.184 (sec). Leaf size: 14
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-exp(x**2) + Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} + \frac {\sqrt {\pi } \operatorname {erfi}{\left (x \right )}}{2} \]