20.11.7 problem Problem 10

Internal problem ID [3789]
Book : Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section : Chapter 8, Linear differential equations of order n. Section 8.9, Reduction of Order. page 572
Problem number : Problem 10
Date solved : Monday, January 27, 2025 at 08:02:19 AM
CAS classification : [[_2nd_order, _linear, _nonhomogeneous]]

\begin{align*} y^{\prime \prime }+y&=\csc \left (x \right ) \end{align*}

Using reduction of order method given that one solution is

\begin{align*} y&=\sin \left (x \right ) \end{align*}

Solution by Maple

Time used: 0.003 (sec). Leaf size: 24

dsolve([diff(y(x),x$2)+y(x)=csc(x),sin(x)],singsol=all)
 
\[ y \left (x \right ) = -\ln \left (\csc \left (x \right )\right ) \sin \left (x \right )+\left (-x +c_{1} \right ) \cos \left (x \right )+c_{2} \sin \left (x \right ) \]

Solution by Mathematica

Time used: 0.019 (sec). Leaf size: 24

DSolve[D[y[x],{x,2}]+y[x]==Csc[x],y[x],x,IncludeSingularSolutions -> True]
 
\[ y(x)\to (-x+c_1) \cos (x)+\sin (x) (\log (\sin (x))+c_2) \]