16.1.6 problem 2(a)

Internal problem ID [3408]
Book : Elementary Differential Equations, Martin, Reissner, 2nd ed, 1961
Section : Exercis 2, page 5
Problem number : 2(a)
Date solved : Tuesday, March 04, 2025 at 04:37:51 PM
CAS classification : [_quadrature]

\begin{align*} y^{\prime }&=\arcsin \left (x \right ) \end{align*}

Maple. Time used: 0.002 (sec). Leaf size: 19
ode:=diff(y(x),x) = arcsin(x); 
dsolve(ode,y(x), singsol=all);
 
\[ y \left (x \right ) = x \arcsin \left (x \right )+\sqrt {-x^{2}+1}+c_{1} \]
Mathematica. Time used: 0.005 (sec). Leaf size: 23
ode=D[y[x],x]==ArcSin[x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to x \arcsin (x)+\sqrt {1-x^2}+c_1 \]
Sympy. Time used: 0.089 (sec). Leaf size: 17
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-asin(x) + Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} + x \operatorname {asin}{\left (x \right )} + \sqrt {1 - x^{2}} \]