20.11.8 problem Problem 11

Internal problem ID [3790]
Book : Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section : Chapter 8, Linear differential equations of order n. Section 8.9, Reduction of Order. page 572
Problem number : Problem 11
Date solved : Monday, January 27, 2025 at 08:02:20 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} x y^{\prime \prime }-\left (2 x +1\right ) y^{\prime }+2 y&=8 x^{2} {\mathrm e}^{2 x} \end{align*}

Using reduction of order method given that one solution is

\begin{align*} y&={\mathrm e}^{2 x} \end{align*}

Solution by Maple

Time used: 0.007 (sec). Leaf size: 25

dsolve([x*diff(y(x),x$2)-(2*x+1)*diff(y(x),x)+2*y(x)=8*x^2*exp(2*x),exp(2*x)],singsol=all)
 
\[ y \left (x \right ) = 2 x^{2} {\mathrm e}^{2 x}+c_{1} {\mathrm e}^{2 x}+2 c_{2} x +c_{2} \]

Solution by Mathematica

Time used: 0.043 (sec). Leaf size: 32

DSolve[x*D[y[x],{x,2}]-(2*x+1)*D[y[x],x]+2*y[x]==8*x^2*Exp[2*x],y[x],x,IncludeSingularSolutions -> True]
 
\[ y(x)\to e^{2 x} \left (2 x^2-1+c_1\right )-\frac {1}{4} c_2 (2 x+1) \]