20.3.12 problem Problem 12

Internal problem ID [3621]
Book : Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section : Chapter 1, First-Order Differential Equations. Section 1.6, First-Order Linear Differential Equations. page 59
Problem number : Problem 12
Date solved : Tuesday, March 04, 2025 at 04:55:04 PM
CAS classification : [_linear]

\begin{align*} 1-y \sin \left (x \right )-\cos \left (x \right ) y^{\prime }&=0 \end{align*}

Maple. Time used: 0.000 (sec). Leaf size: 11
ode:=1-y(x)*sin(x)-cos(x)*diff(y(x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y \left (x \right ) = \cos \left (x \right ) c_{1} +\sin \left (x \right ) \]
Mathematica. Time used: 0.034 (sec). Leaf size: 13
ode=(1-y[x]*Sin[x])-Cos[x]*D[y[x],x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \sin (x)+c_1 \cos (x) \]
Sympy. Time used: 0.688 (sec). Leaf size: 10
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-y(x)*sin(x) - cos(x)*Derivative(y(x), x) + 1,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} \cos {\left (x \right )} + \sin {\left (x \right )} \]