20.24.19 problem Problem 20

Internal problem ID [4004]
Book : Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section : Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.2. page 739
Problem number : Problem 20
Date solved : Monday, January 27, 2025 at 08:06:02 AM
CAS classification : [[_2nd_order, _linear, _nonhomogeneous]]

\begin{align*} y^{\prime \prime }+2 x^{2} y^{\prime }+y x&=2 \cos \left (x \right ) \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Solution by Maple

Time used: 0.003 (sec). Leaf size: 42

Order:=6; 
dsolve(diff(y(x),x$2)+2*x^2*diff(y(x),x)+x*y(x)=2*cos(x),y(x),type='series',x=0);
 
\[ y \left (x \right ) = \left (1-\frac {x^{3}}{6}\right ) y \left (0\right )+\left (x -\frac {1}{4} x^{4}\right ) D\left (y \right )\left (0\right )+x^{2}-\frac {x^{4}}{12}-\frac {x^{5}}{4}+O\left (x^{6}\right ) \]

Solution by Mathematica

Time used: 0.025 (sec). Leaf size: 45

AsymptoticDSolveValue[D[y[x],{x,2}]+2*x^2*D[y[x],x]+x*y[x]==2*Cos[x],y[x],{x,0,"6"-1}]
 
\[ y(x)\to -\frac {x^5}{4}-\frac {x^4}{12}+c_2 \left (x-\frac {x^4}{4}\right )+c_1 \left (1-\frac {x^3}{6}\right )+x^2 \]