20.28.10 problem 10

Internal problem ID [4072]
Book : Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section : Chapter 11, Series Solutions to Linear Differential Equations. Additional problems. Section 11.7. page 788
Problem number : 10
Date solved : Monday, January 27, 2025 at 08:07:31 AM
CAS classification : [[_Emden, _Fowler]]

\begin{align*} 4 x y^{\prime \prime }+3 y^{\prime }+3 y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Solution by Maple

Time used: 0.016 (sec). Leaf size: 44

Order:=6; 
dsolve(4*x*diff(y(x),x$2)+3*diff(y(x),x)+3*y(x)=0,y(x),type='series',x=0);
 
\[ y \left (x \right ) = c_{1} x^{{1}/{4}} \left (1-\frac {3}{5} x +\frac {1}{10} x^{2}-\frac {1}{130} x^{3}+\frac {3}{8840} x^{4}-\frac {3}{309400} x^{5}+\operatorname {O}\left (x^{6}\right )\right )+c_{2} \left (1-x +\frac {3}{14} x^{2}-\frac {3}{154} x^{3}+\frac {3}{3080} x^{4}-\frac {9}{292600} x^{5}+\operatorname {O}\left (x^{6}\right )\right ) \]

Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 83

AsymptoticDSolveValue[4*x*D[y[x],{x,2}]+3*D[y[x],x]+3*y[x]==0,y[x],{x,0,"6"-1}]
 
\[ y(x)\to c_1 \sqrt [4]{x} \left (-\frac {3 x^5}{309400}+\frac {3 x^4}{8840}-\frac {x^3}{130}+\frac {x^2}{10}-\frac {3 x}{5}+1\right )+c_2 \left (-\frac {9 x^5}{292600}+\frac {3 x^4}{3080}-\frac {3 x^3}{154}+\frac {3 x^2}{14}-x+1\right ) \]