20.28.11 problem 11

Internal problem ID [4073]
Book : Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section : Chapter 11, Series Solutions to Linear Differential Equations. Additional problems. Section 11.7. page 788
Problem number : 11
Date solved : Monday, January 27, 2025 at 08:07:32 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} x^{2} y^{\prime \prime }+\frac {3 x y^{\prime }}{2}-\frac {\left (1+x \right ) y}{2}&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Solution by Maple

Time used: 0.013 (sec). Leaf size: 48

Order:=6; 
dsolve(x^2*diff(y(x),x$2)+3/2*x*diff(y(x),x)-1/2*(1+x)*y(x)=0,y(x),type='series',x=0);
 
\[ y \left (x \right ) = \frac {c_{2} x^{{3}/{2}} \left (1+\frac {1}{5} x +\frac {1}{70} x^{2}+\frac {1}{1890} x^{3}+\frac {1}{83160} x^{4}+\frac {1}{5405400} x^{5}+\operatorname {O}\left (x^{6}\right )\right )+c_{1} \left (1-x -\frac {1}{2} x^{2}-\frac {1}{18} x^{3}-\frac {1}{360} x^{4}-\frac {1}{12600} x^{5}+\operatorname {O}\left (x^{6}\right )\right )}{x} \]

Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 86

AsymptoticDSolveValue[x^2*D[y[x],{x,2}]+3/2*x*D[y[x],x]-1/2*(1+x)*y[x]==0,y[x],{x,0,"6"-1}]
 
\[ y(x)\to c_1 \sqrt {x} \left (\frac {x^5}{5405400}+\frac {x^4}{83160}+\frac {x^3}{1890}+\frac {x^2}{70}+\frac {x}{5}+1\right )+\frac {c_2 \left (-\frac {x^5}{12600}-\frac {x^4}{360}-\frac {x^3}{18}-\frac {x^2}{2}-x+1\right )}{x} \]