5.17.6 Problems 501 to 544

Table 5.887: Second order, non-linear and homogeneous

#

ODE

Mathematica

Maple

18965

\[ {}y^{\prime \prime }-a {y^{\prime }}^{2} = 0 \]

18967

\[ {}y^{\prime \prime } y-{y^{\prime }}^{2} = y^{2} \ln \left (y\right ) \]

18968

\[ {}y^{\prime \prime }+2 y^{\prime }+4 {y^{\prime }}^{3} = 0 \]

18973

\[ {}a y^{\prime \prime } = \sqrt {1+{y^{\prime }}^{2}} \]

18982

\[ {}\left (y^{2}+2 x^{2} y^{\prime }\right ) y^{\prime \prime }+2 \left (x +y\right ) {y^{\prime }}^{2}+x y^{\prime }+y = 0 \]

18987

\[ {}{y^{\prime }}^{2}-y^{\prime \prime } y = n \sqrt {{y^{\prime }}^{2}+a^{2} {y^{\prime \prime }}^{2}} \]

18989

\[ {}y^{\prime \prime }+y^{\prime }+{y^{\prime }}^{3} = 0 \]

18994

\[ {}y \left (1-\ln \left (y\right )\right ) y^{\prime \prime }+\left (1+\ln \left (y\right )\right ) {y^{\prime }}^{2} = 0 \]

19033

\[ {}x^{2} y y^{\prime \prime }+\left (x y^{\prime }-y\right )^{2} = 0 \]

19357

\[ {}x y y^{\prime \prime }+x {y^{\prime }}^{2}+y y^{\prime } = 0 \]

19377

\[ {}y^{\prime \prime }+\frac {a^{2}}{y} = 0 \]

19378

\[ {}y^{\prime \prime } = y^{3}-y \]

19379

\[ {}y^{\prime \prime } = {\mathrm e}^{2 y} \]

19381

\[ {}y^{\prime \prime } = \sqrt {1+{y^{\prime }}^{2}} \]

19388

\[ {}x y^{\prime \prime }+x {y^{\prime }}^{2}-y^{\prime } = 0 \]

19393

\[ {}y^{\prime \prime }+y y^{\prime } = 0 \]

19395

\[ {}y^{\prime \prime } y-{y^{\prime }}^{2}+y^{\prime } = 0 \]

19396

\[ {}y^{\prime \prime }+2 y^{\prime }+4 {y^{\prime }}^{2} = 0 \]

19397

\[ {}y^{\prime \prime } = a {y^{\prime }}^{2} \]

19399

\[ {}y^{\prime \prime } y+\sqrt {{y^{\prime }}^{2}+a^{2} {y^{\prime \prime }}^{2}} = {y^{\prime }}^{2} \]

19404

\[ {}a y^{\prime \prime } = \sqrt {1+{y^{\prime }}^{2}} \]

19408

\[ {}y^{\prime } = x y^{\prime \prime }+\sqrt {1+{y^{\prime }}^{2}} \]

19415

\[ {}x y y^{\prime \prime }+x {y^{\prime }}^{2} = 3 y y^{\prime } \]

19416

\[ {}2 x^{2} y y^{\prime \prime }+y^{2} = x^{2} {y^{\prime }}^{2} \]

19417

\[ {}x^{2} y^{\prime \prime } = \sqrt {m \,x^{2} {y^{\prime }}^{3}+y^{2} n} \]

19418

\[ {}x^{4} y^{\prime \prime } = \left (x^{3}+2 x y\right ) y^{\prime }-4 y^{2} \]

19419

\[ {}x^{4} y^{\prime \prime }-x^{3} y^{\prime } = x^{2} {y^{\prime }}^{2}-4 y^{2} \]

19420

\[ {}x^{2} y^{\prime \prime }+4 y^{2}-6 y = x^{4} {y^{\prime }}^{2} \]

19421

\[ {}y^{\prime \prime } = {\mathrm e}^{y} \]

19426

\[ {}y^{\prime \prime } = \frac {1}{\sqrt {a y}} \]

19428

\[ {}-a y^{\prime \prime } = \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}} \]

19429

\[ {}\sin \left (y\right )^{3} y^{\prime \prime } = \cos \left (y\right ) \]

19433

\[ {}y^{\prime \prime } y+\sqrt {{y^{\prime }}^{2}+a^{2} {y^{\prime \prime }}^{2}} = {y^{\prime }}^{2} \]

19481

\[ {}x^{2} y y^{\prime \prime }+\left (x y^{\prime }-y\right )^{2} = 0 \]

19590

\[ {}2 x^{2} y y^{\prime \prime }+4 y^{2} = x^{2} {y^{\prime }}^{2}+2 x y y^{\prime } \]

19599

\[ {}x^{2} y y^{\prime \prime }+\left (x y^{\prime }-y\right )^{2}-3 y^{2} = 0 \]

19600

\[ {}y+3 x y^{\prime }+2 y {y^{\prime }}^{2}+\left (x^{2}+2 y^{\prime } y^{2}\right ) y^{\prime \prime } = 0 \]

19601

\[ {}\left (y^{2}+2 x^{2} y^{\prime }\right ) y^{\prime \prime }+2 \left (x +y\right ) {y^{\prime }}^{2}+x y^{\prime }+y = 0 \]

19605

\[ {}y^{\prime \prime }+y^{\prime }+{y^{\prime }}^{3} = 0 \]

19607

\[ {}y \left (1-\ln \left (y\right )\right ) y^{\prime \prime }+\left (1+\ln \left (y\right )\right ) {y^{\prime }}^{2} = 0 \]

19608

\[ {}y^{\prime \prime } y-{y^{\prime }}^{2} = y^{2} \ln \left (y\right ) \]

19609

\[ {}y^{\prime }-y^{\prime \prime } y = n \sqrt {{y^{\prime }}^{2}+a^{2} y^{\prime \prime }} \]

19612

\[ {}x^{4} y^{\prime \prime } = \left (-x y^{\prime }+y\right )^{3} \]

19613

\[ {}x y^{\prime \prime }+2 y^{\prime } = x^{2} y^{\prime }-y^{2} \]