Internal
problem
ID
[4041]
Book
:
Differential
equations
and
linear
algebra,
Stephen
W.
Goode
and
Scott
A
Annin.
Fourth
edition,
2015
Section
:
Chapter
11,
Series
Solutions
to
Linear
Differential
Equations.
Exercises
for
11.5.
page
771
Problem
number
:
8
Date
solved
:
Tuesday, March 04, 2025 at 05:23:22 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
Using series method with expansion around
Order:=7; ode:=x^2*(x^2+1)*diff(diff(y(x),x),x)+7*x*exp(x)*diff(y(x),x)+9*(1+tan(x))*y(x) = 0; dsolve(ode,y(x),type='series',x=0);
ode=x^2*(x^2+1)*D[y[x],{x,2}]+7*x*Exp[x]*D[y[x],x]+9*(1+Tan[x])*y[x]==0; ic={}; AsymptoticDSolveValue[{ode,ic},y[x],{x,0,6}]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**2*(x**2 + 1)*Derivative(y(x), (x, 2)) + 7*x*exp(x)*Derivative(y(x), x) + (9*tan(x) + 9)*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_regular",x0=0,n=7)